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ABSTRACT

The rotating flows of von Kdrmdn and Bodewadt are re-examined on
the basis of an extended boundary layer theory. It is found that the
oscillating flow constructed by Bodewadt is due to underdetermined
boundary data. A complete set of boundary data is defined for both
problems in accordance with the practical flow models in consideration.
The new solutions, which are defined as integrals of extended ordinary
differential equations,eliminate the acknowledged discrepancies of the
old solutions., Axisymmetric and plane stagnation flows with finite
initial velocities, which are of significance for the design of
piston machines, are constructed as special cases of von Kirman's

problem,
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1. Introduction

The investigation 6] of the boundary layer along a flat surface pro-
duced by a potential vortex flow revealed an inconsistency of Prandtl's
boundary layer theory which is negligible only for almost parallel
boundary layers. This observation led to an important extension of the
classical boundary layer theory which maintains the elliptic character of
the flow problems considered. The new concept of the "limiting line of a
boundary layer" yielded a powerful key to an asymptotic integration of
the exact Navier-Stokes equations, which verified the extended boundary
layer theory.

The new method of integration may now be applied to the boundary
layer problems of von Kirmidn and Bodewadt [2, 3, 4, 5'. Although in
both problems exact solutions of the Navier-Stokes equations have been
constructed, the integrals obtained do not represent the motions de-
sired in the practical applications, Bodewadt's solution describes a
rotating flow over a flat plate which is assumed to be asymptotic to
a solid-body vortex. However, the flow constructed possesses a source
and sink distribution of infinite velocity at large distances from
the axis of the vortex. These sources and sinks cause oscillations
in the flow which are generally recognized to be meaningless in the
practical applications., Since the vortex motion produced by a ro-
tating disk in a fluid at rest (von Kdrman's problem) satisfies the

same differential equations and analogous boundary conditions as the

flow generated by a solid-body vortex over a flat plate, Bodewadt's
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solution of the latter problem disqualifies also von Kdrmidn's solution

of the former problem., Indeed, von Karmdn's solution possesses a sink
distribution of infinite velocity at large distances from the axis of
rotation. Because of the continuity of the flow, these sinks should
require a source distribution of infinite velocity at large distances
from the rotating disk., Furthermore, it may be mentioned that in both
problems the pressure terms should be related to all velocity compo-
nents (see equation (20)) and not only to one component. The pressure

is determined mainly by the axial component at the axis and by the radial
and tangential components far away from the axis,

It will be the subject of this paper to resolve the contradictions
in the problems of von Kdrman and Bodewadt, New asymptotic solutions
will be defined as integrals of an extended set of ordinary differen-
tial equations, which are useful for practical applications. The
new solution of von Kdrmdn's problem ylelds as a special case the axi-
symmetric stagnation flow, which is produced by a homogeneous motion
normal to a flat surface of infinite dimensions., A simple adjustment
of the corresponding differential equations leads to the solution of
the analogous problem in plane flow., The classical exact solutions
of the Navier-Stokes equations describe, as is well known, the stag-
nation flows produced by nonhomogeneous motions of infinite initial
velocities, The difference between the classical and the new stag-
nation {lows displays the significance of both solutions in practical

applications,
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The new results and the results obtained in "6 demonstrate the
strength of the unifying principle applied, which is manifested in the
concept of the limiting line of a boundary layer. Furthermore, the re-
sults fully justify the extended boundary layer theory which was intro-
duced in 6] as a replacement of the generally inconsistent classical
boundary layer theory.

2, The Problems of von Kiarmin and Bodewadt

Let (u,v,w) denote the velocity vector of an axisymmetric vortex flow
over a disk of infinite dimensions which is located at z = 0 in the
cylindrical coordinate system (r,¢,z). The flow with constant kinematic
viscosity v, constant density s, and variable pressure p is governed by

the Navier-Stokes equations

V- 1 u
u L A 1 . u
Wip ¥ Wz - - Pr ¥ L[“rr +'(r)r + “z%] (H
uv, + wy, + 4% = [ A
r v Wz T3 Ter YA TE )  Vaz 2)
L -
uw_ + ww = - l p, + -w + ! 4+ W i
r z = Py rr 7 F Yy 2z (3)
L .4

o
.

4)

(ru)r + (rw)Z =

In von K4rmdn's problem ‘5 the vortex motion is required to satisfy the

boundary conditions
Z=0:u=0’ vslr,w=0 (5)

(6)
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In Bodewadt's problem {5, the vortex flow 1is required to fulfill the
boundary conditions
z=0 : u=0,v=0,w=0 N
z = o> u=0,v=yr , (8)
The angular velocity o of the rotating disk in von Kidrmdn's problem and
of the rotating fluid in Bodewadt's problem is at one's disposal,

It 1{s significant to mention that at this point von Karmdn and
Bodewadt failed to examine the uniqueness of the solutions of their
problems, As Dirichlet's problem in potential theory shows, both
problems yield families of solutions which differ in their singular-
ities at r = », Von Kirmdn and Bodewadt enforced the uniqueness for
their problems by the well-known similarity assumptions, In return one
is forced to accept the unrealistic source and sink distributions at
r = ~ which are the consequences of such drastic simplifications of
the problems (see [6]),

In order to determine a solution of the Navier-Stokes equations
which describes the vortex motion produced by a rotating disk in a
fluid at rest, the following set of boundary conditions appears to be

complete and adequate see [6 ):

z=0 : u=0,v=.r,w=0 (9
2= 1 u=0,v=0,wv=w (10)
z 0

. u v
r - }. T 0 T 0w o (b

The solution of the Navier-Stokes equations, which describes the vortex

motion produced by a fluid rotating as a solid body over a flat plate at
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rest, appears to be determined by the following set of boundary data:

z=0 ; u=0, v=0, w=0 (12)
Z2=o : u=0, v=ur,w=uy, (13)
z>0 u

u_ v (14)

In both problems the constant w, determines the strength of the corres-
ponding singularity which is located at the point (r = », z = 0),
Following the ideas of the derivations presented in 6], it is use-
ful to introduce the limiting line z = 6(r) of the boundary layer ad-
jacent to the surface z = 0, Provided a proper boundary layer exists,
its limiting line z = 5(r) will then be characterized by the approximate
data
z = §5(r) s u 0, v 0, W= w, (15)
in von Kdrmdn's case, and
z = i(r) : u- 0, v ., W=W (16)
in Bodewadt's problem., The function ‘(r) must be analytic and even,
Thus it must yield an expansion of the form
z=48(r) = a-=br + ... forr T, . (17)
Because of the boundary data at r = :, ‘' (r) must decrease monotonically
to zero as r tends to infinity,
Assuming tentatively that such a limiting line exists, then it is
convenient to map the boundary layer 0 - 2z ‘(r) onto the parallel
strip O 7 < 1 by the following similarity transformation:

r=r, o= ?-Z(Fy . (18)

The conditions (9) through (16) suggest a search for solutions of the
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Navier-Stokes equations which are of the special form

u=u rU({:), v = rV(C), W =W, w(v) (19)
P -]
;s-f;—-po«)+%—’—r’p<g). (20)

After carrying out these transformations one arrives at the following

reduced Navier-Stokes equations:

o ‘ 587 ” 2 - ’ .
(1+ 82020 - : B — + 68" - 26%) +9‘;—(3’_w - B gu)Ju

wd )
(21)
w? o s’ 2 web’ .
5 LU = VP R = 0 (Rt s SFo
14+ 67202y = (38 4 567 - 2670y + W2 (Y2 2 BD )7
L+ 620V - | (37 + - )+ =\ & gV
(22)
=2 % o
v
" 6! y . w2 W s’ . y
(1+612€2)W-Lb(—:‘“+ 68 -26'~)+T(ﬁ'T5U)‘lw
(23)

_lu)&a U}ra. W o
25 (g3 -5 P
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rf)l J W =
2U'T§U+Mw 0. (24)
In these equations the primes and dots indicate the derivatives with
respect to r and . If second order terms in r are neglected, one
arrives at the following set of ordinary differential equations by

applying the expansion (17):

.0 . 2 o
U+Laabg-§.‘i‘SWJU=%—LU2-V2+P2-£“2§Pot

v ufa - 25)
V + |8abl - E%E W v =2 3%3 w (26)
W+ |4abl - % W= - B, (27)

2y
w0, (28)
With the conventions

U==03G()y W= Z:ﬁ'a G(()y Py = f’;;“f:—z H(O) (29)
R = % % , <2 = ab (30)

one obtains the equivalent system of ordinary differential equations:

G + 2247 = RG)E + “R(ET = V2 + Po = 407 (H) = 0 (3D)

. c s 32)

V 4 2¢5(47 = RG)V + 2-°RGV = 0 (
(33)

¢ +2+(@7 -RG)C+ ~“RA=0,
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In these equations G(() denotes the stream function of the continuity
equation (28), The constant parameter R may be called the Reynolds
number of the rotating motion, An appropriate justification for this
notation will be given later,
An evaluation of the mapping (18) shows that the two singular points

(r =% ~, z = 0) are stretched into the corresponding lines (r = % =,

2 0)., Hence, in the (r, () plane the exact motions considered are
not determined by any boundary data at r = + ~, Therefore all boundary
data may be satisfied by solutions of the reduced equations (31), (32),
and (33), This observation leads to the following solutions:

Jor small values of r and for O = [ ¢ 1, the functions G(J),

H(Z), P.(), and V() represent approximate solutions of either von
Kirmdn's problem or of Bodewadt's problem, provided:

(&) G(7) and V( ) are solutions of the differential equations
€ + 207(60 - RG)C + 8((27 = RG)G + ~*R(C° - V° + ) = 0 (34)

V + 2°(4, = RG)V + 25RGV = 0 35)

with either P. (") 0 and

f7=0: 6=0,6=0, V=1 (36)

(22 ¥
]
e
<«
"
(]
"
g
[=S
(2}
o
-
<
[}
(=]
-

(37)

or with P. (") - 1 and

(38)
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(== 1 G =G, = finite, V = 1,

39
(B) H(7) is determined by
1e 6 - S wo- & [ Ceea (40)
Rc® R Yo
where
4 poo
Ho = & [ tG(t)dt, (41)
(C) G(7) and V(i) satisfy the conditions
lcl = l6.| = e, |G] = &, Gl = ¢,| €| - ¢
o= b (42)
vl =1-c¢

for a common maximum - ,

(D) the coefficients of the parabolic limiting line of the boundary

layer
6(r) = a = br %3)
are determined by
= X « 1
a= L= = .~ ==
oL w R and b = -y 5 R (44)
where
w, = 2. aG, , (45)

(E) the accuracy parameter - 1s chosen sufficiently small,
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The justification of this solution is based upon the same principles
as the equivalent solution in [6]. An approximate solution of the
Navier-Stokes equations within the boundary layer 1is joined with an
exact solution outside the boundary layer in an almost analytic manner.
The admitted violation of the analyticity along the limiting line of
the boundary layer is controlled by the property (C). It may be empha-
sized that the property (C) does not confine the validity of the method
applied to flows with large Reynolds numbers,

The existence of a solution to the remaining problem posed above can
be illustrated in the same fashion as for the corresponding problem con-
sidered in 67, A numerical method of solving the remaining boundary
value problem will be presented in a paper in preparation, Simultaneously,
numerical results will be displayed for various Reynolds numbers of both
problems,

It is significant to point out the difference between the new equations
(31) and (32) and von Kdrmdn's and Bodewadt's equations, The new terms
8'2,5 and 8'”f0 are obviously not negligible against the corresponding
terms 2-°RGG and 2~ RGV within the boundary layer 0 = ' =< 1, as they
determine the character of the flow immediately at the surface = = 0,

It is also not useful to delete these terms outside the boundary layer
because they guarantee the proper analytic continuations of the functions
G(), 8¢y, G(2), E( ),and V( ) for ~ - 1, as is required by property (A).
These terms also coufirm the conjecture formulated in '6 that the dis-

turbance of the primary velocity must decay across the boundary layer with

10
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logarithmic order two, if a distinctive boundary layer is to be expected.
The appearance of the terms 80°G and 8:%rV in the equations (31)
and (32) resolve evidently the discrepancies in the solutions of
von Karmdn and Bdewadt, which were pointed out in the introduction.
Their results are obtained by forcing the second coefficient b in
the expansion (17) to zero, in order to attaiﬁ the necessary uniqueness
for their underdetermined problems. Exactly the same discrepancy arises
by applying the classical boundary layer assumptions. Thus, the
present problems fully justify the extended boundary layer theory
which was introduced in {61,
It may be mentioned that the solutions constructed depend only
upon the Reynolds number R at least up to the extent of the accuracy
maintained by the equations (34) and (35). Thus all vortex flows
with equal numbers R (see equation (30)) are similar to each other,
which justifies the term Reynolds number for R. This statement
follows through the introduction of the following new scales for all

variables concerned:

= j— = £ 7 = B¥
T VTR 73 (46)
_ b h. (47
H ATRT ’ P = ‘R_a .

One obtains the transformed system

B O+ 2067 ~g)E+8TQRT~g)g+ g5 ~f +h =0 (48)

11
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F +20N-g)f+2gf =0 ,

(49)
which must be integrated under the conditions
h, =0, or h, = R® (50
MT=0: g=0,g=0, f=R,orf=0 (51)
T=coz: g=g,=finite, £ =0, or £ =R, (52)

The similarity of two vortex flows with equal Reynolds numbers R is
in full agreement with empirical observations., This significant coin-
cldence indicates a certain relationship between the theoretical Reynolds
number (30) and the well-known common Reynolds number. In order to
discover this relationship it is helpful to examine the flow models of
finite dimensions which led to the boundary data (9), (10), and (11),
or (12), (13), and (14) of the approximate flow models of infinite di-
mensions considered.

In von Kdrmdn's problem the vortex motion is produced by a rotating
disk in a viscous fluid in a high cylinder at rest (see Figure 1), A
special slit between the cylinder and the disk represents the sink which
18 located at (r = », z = 0) in the model investigated. In Bodewadt's
problem the configuration is the same, but the cylinder is rotating
with the fluid over the disk at rest, Assuming that the friction

forces along the cylinder are negligible, then the corresponding

12
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vortex motions are roughly represented by the solutions constructed
above, If D denotes the diameter of the cylinder, then the common

Reynolds number Re is found to be
_ w 2 o
Re = ;(z) . (53)

An identification of the theoretical Reynolds number (30) with the

common Reynolds number (53) leads to the equality

a _ (DY (54)
b (z) .

This interpretation of the ratio a/b appears plausible provided the
accuracy of the solution constructed is sufficient to represent the
entire flow {or 0 " r + D/2., In fact, the values r = * a/b determine
the intersections of the parabolic limiting line of the boundary
layer &(r) with the disk z = 0, (see equation (43) and Figure 1),

3. Stagnation Flows

The problem considered by von Karmian includes a stagnation flow,
which 1is of interest in the design of piston machines. In order to
display this special case it is useful to reconsider the flow model
which is sketched in rfigure 1, By holding the cylinder and the disk
at rest and pressing a piston with the constant velocity we into the
fluid, one produces a homogeneous flow which is disturbed by the
outflow of the fluid through the slit between the disk and the
cylinder.

If the diameter D of the cylinder is sufficiently large, then

the stagnation flow described can be identified as a special case of

13
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von Karmdn's problem investigated above. Indeed, by taking
v;‘“O,VEo’ f:og (SS)

and replacing w by

(56)

mlcr|

W = We

in all corresponding differential equations and boundary data of the
previcus chapter, one arrives at the solution of the stagnation flow
problem under consideratiom.

Let n = 1 denote the axisymmetric case and n = 0 the corresponding

plane problem, then the equation (34) reduces to

G + - (8 + 4n)7 - 2"‘RG;I G + 2(n + 1)2~*712 < RG' G + q""R(';"f- 0 (57)

which must be integrated under the boundary conditions

g=0: G=0, é’O, (58)
-1
fr=m 3 G= Eﬁ: =G , (59)

For the derivation of equation (57) the following conventions have been

used:
b. 2n-1 . :
u=-w, Y2l w=2"wc(), T2 AF G (40
z=¢(r)=a-br°, :=.Z
n(x) 61)
W oa o
R==yp » F=ab | €2)

14
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The function &(r) represents again the limiting line of the boundary
layer adjacent to the disk z = O, The dimensionless value R may be
called the Reynolds number of the flow. The pressure is determined

by the equation

_ G 2(n + 1) ® .
=y + - .f tG(t)de (63)

‘L

H=2 G

The solution of the remaining problem is, of course, acceptable only
if the analogous condition (C) of the previous chapter is fulfilled.
Numerical results have been obtained for various Reynolds numbers.

They will be published in a paper in preparation.

The axisymmetric and plane stagnation flows investigated may be
compared with the corresponding classical stagnation flows past a flat
disk of infinite dimensions. In the present problems the fluid is kept
within walls normal to the disk. Thus the initially homogeneous flow
of finite velocity remains undisturbed almost throughout the entire
fluid, The disturbance caused by the outflow is therefore limited to
a thin boundary layer along the disk, In the classical stagnation flows
the walls normal to the disk are removed (see Figure 2). This causes a
nonhomogeneous potential flow past the disk which is disturbed by the
friction forces along the surface of the disk. The steady state of this
flow is maintained by an unbounded initial velocity at large distances
from the plate, This type of stagnation flow represents evidently a

model for viscous flows past blunt bodies with stagnation points,

15
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FIGURE 1 :

MODEL OF THE PRESENT FLOW PROBLEMS

(Without piston for w # 0, with piston for w = 0)
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FIGURE 2 :

MODEL OF THE CLASSICAL STAGNATION FLOW
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